Swinburne
Browse

A Time-Series Pattern Based Noise Generation Strategy for Privacy Protection in Cloud Computing

Download (3.54 MB)
conference contribution
posted on 2024-07-09, 17:00 authored by Gaofeng Zhang, Yun YangYun Yang, Xiao Liu, Jinjun ChenJinjun Chen
Cloud computing promises an open environment where customers can deploy IT services in a pay-as-you-go fashion while saving huge capital investment in their own IT infrastructure. Due to the openness, various malicious service providers may exist. Such service providers may record service information in a service process from a customer and then collectively deduce the customer's private information. Therefore, from the perspective of cloud computing security, there is a need to take special actions to protect privacy at client sides. Noise obfuscation is an effective approach in this regard by utilising noise data. For instance, it generates and injects noise service requests into real customer service requests so that service providers would not be able to distinguish which requests are real ones if their occurrence probabilities are about the same. However, existing typical noise generation strategies mainly focus on the entire service usage period to achieve about the same final occurrence probabilities of service requests. In fact, such probabilities can fluctuate in a time interval such as three months and may significantly differ than other time intervals. In this case, service providers may still be able to deduce the customers' privacy from a specific time interval although unlikely from the overall period. That is to say, the existing typical noise generation strategies could fail to protect customers' privacy for local time intervals. To address this problem, we develop a novel time-series pattern based noise generation strategy. Firstly, we analyse previous probability fluctuations and propose a group of time-series patterns for predicting future fluctuated probabilities. Then, based on these patterns, we present our strategy by forecasting future occurrence probabilities of real service requests and generating noise requests to reach about the same final probabilities in the next time interval. The simulation evaluation demonstrates that our strategy can cope with these fluctuations to significantly improve the effectiveness of customers' privacy protection.

History

Available versions

PDF (Accepted manuscript)

ISBN

9781467313957

Journal title

2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012)

Conference name

IEEE International Symposium on Cluster, Cloud and Grid Computing

Location

Ottawa, ON

Start date

2012-05-13

End date

2012-05-16

Volume

23

Issue

16

Pagination

7 pp

Publisher

IEEE

Copyright statement

Copyright © 2012 IEEE. The accepted manuscript is reproduced in accordance with the copyright policy of the publisher. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC