Swinburne
Browse

A particle swarm optimization-based neural network for detecting nocturnal hypoglycemia using electroencephalography signals

Download (1 MB)
conference contribution
posted on 2024-07-11, 09:16 authored by Lien B. Nguyen, Anh V. Nguyen, Sai Ho Ling, Hung Nguyen
For patients with Type 1 Diabetes Mellitus (T1DM), hypoglycemia or the state of low blood glucose level is a very common but dangerous complication. Hypoglycemia episodes can lead to a large number of serious symptoms and effects, including unconsciousness, coma and even death. The variety of hypoglycemia symptoms is originated from the inadequate supply of glucose to the brain. By analyzing electroencephalography (EEG) signals from five T1DM patients during an overnight study, we find that under hypoglycemia, both centroid theta frequency and centroid alpha frequency change significantly against non-hypoglycemia conditions. Furthermore, a neural network is developed to detect hypoglycemia using the mentioned two EEG features. A standard particle swarm optimization strategy is applied to optimize the parameters of this neural network. By using the proposed method, we obtain the classification performance of 82% sensitivity and 63% specificity. The results demonstrate that hypoglycemia episodes can be detected non-invasively and effectively from EEG signals.

History

Available versions

PDF (Published version)

ISSN

2161-4393

Journal title

Proceedings of the International Joint Conference on Neural Networks, (IJCNN), Brisbane, Queensland, Australia, 10-15 June 2012

Conference name

The International Joint Conference on Neural Networks, IJCNN, Brisbane, Queensland, Australia, 10-15 June 2012

Publisher

IEEE

Copyright statement

Public domain: U.S. Government work not protected by U.S. copyright.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC