Swinburne
Browse

Constraint consistent genetic algorithms

Download (656.14 kB)
conference contribution
posted on 2024-07-11, 13:35 authored by Ryszard KowalczykRyszard Kowalczyk
It has commonly been acknowledged that solving constrained problems with a variety of complex constraints is a challenging task for genetic algorithms (GA). Existing methods to handle constraints in GA are often computationally expensive, problem dependent or constraint specific. In this paper we introduce an idea of constraint consistent GA (CCGA) as an attempt to overcome those drawbacks. Constraint handling is based on general constraint consistency methods that prune the search space and thus reduce the search effort in CCGA. Unfeasible solutions are detected and eliminated from the search space at each stage of CCGA simulation process to support genetic operations in producing feasible solutions. A number of well known standard genetic operators are adapted to take advantage of provided constraint consistency during initialization, crossover and mutation. Initial experiments indicate that in the terms of the solution quality and the number of iterations the constraint consistency based approach in CCGA can outperform other constraint handling methods in GA for a number of selected test problems.

History

Available versions

PDF (Published version)

Journal title

Proceedings of the IEEE Conference on Evolutionary Computation, ICEC

Conference name

The IEEE Conference on Evolutionary Computation, ICEC

Pagination

5 pp

Publisher

IEEE

Copyright statement

Copyright © 1997 IEEE. The published version is reproduced in accordance with the copyright policy of the publisher. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC