Swinburne
Browse

Improved coexistence and loss tolerance for delay based TCP congestion control

Download (178.2 kB)
conference contribution
posted on 2024-07-09, 22:46 authored by David A. Hayes, Grenville ArmitageGrenville Armitage
Loss based TCP congestion control has been shown to not perform well in environments were there is non-congestion related packet losses. Delay based TCP congestion control algorithms provide a low latency connection with no congestion related packet losses, and have the potential for being tolerant to non-congestion related losses. Unfortunately, delay based TCP does not compete well with loss based TCP, currently limiting its deployment. We propose a delay based algorithm which extends work by Budzisz et al. to provide tolerance to non-congestion related losses, and better coexistence with loss based TCP in lightly multiplexed environments. We demonstrate that our algorithm improves the throughput when there are 1% packet losses by about 150%, and gives more than 50% improvement in the ability to share capacity with NewReno in lightly multiplexed environments.

History

Available versions

PDF (Published version)

ISBN

9781424483877

Journal title

Proceedings - Conference on Local Computer Networks, LCN

Conference name

Conference on Local Computer Networks, LCN

Pagination

7 pp

Publisher

IEEE

Copyright statement

Copyright © 2010 IEEE. The published version is reproduced in accordance with the copyright policy of the publisher. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Notes

This paper received a best paper award at LCN 2010.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC