Swinburne
Browse

Laser-matter interaction in the bulk of transparent dielectrics: Confined micro-explosion

Download (145.61 kB)
conference contribution
posted on 2024-07-09, 23:18 authored by Eugene Gamaly, Barry Luther-Davies, Andrei Rode, Saulius JuodkazisSaulius Juodkazis, Hiroki Misawa, Ludovic Hallo, Philippe Nicolai, Vladimir Tikhonchuk
We present here the experimental and theoretical studies of drastic transformations induced by a single powerful femtosecond laser pulse tightly focused inside a transparent dielectric, that lead to void formation in the bulk. We show that the laser pulse energy absorbed within a volume of less than 1μm3 creates the conditions with pressure and temperature range comparable to that formed by an exploding nuclear bomb. At the laser intensity above 6 × 1012 W/cm2 the material within this volume is rapidly atomized, ionized, and converted into a tiny super-hot cloud of expanding plasma. The expanding plasma generates strong shock and rarefaction waves which result in the formation of a void. Our modelling indicates that unique states of matter can be created using a standard table-top laser in well-controlled laboratory conditions. This state of matter has temperatures 105 K, heating rate up to the 1018 K/s, and pressure more than 100 times the strength of any solid. The laser-affected sites in the bulk were detected ('read') by generation of white continuum using probe femtosecond pulses at much lower laser intensity of 1010 W/cm2 − 1011 W/cm2. Post-examination of voids with an electron microscope revealed a typical size of the void ranges from 200 to 500 nm. These studies will find application for the design of 3D optical memory devices and for formation of photonic band-gap crystals.

History

Available versions

PDF (Published version)

ISSN

1742-6588

Journal title

Journal of Physics: Conference Series

Conference name

Conference Series

Volume

59

Issue

1

Pagination

5 pp

Publisher

Institute of Physics Publishing

Copyright statement

Copyright © 2007 IOP Publishing Ltd. The published version is reproduced in accordance with the copyright policy of the publisher. This an Open Access article which permits the author unrestricted use, distribution and reproduction for non-commercial purposes, provided the original work is properly cited.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC