Swinburne
Browse

On performance of transform domain adaptive filters with Markov-2 inputs

Download (454.93 kB)
conference contribution
posted on 2024-07-09, 19:37 authored by Zhao Shengkui, Zhihong ManZhihong Man, Suiyang Khoo
In this paper, the analysis for the performance of the discrete Fourier transform LMS adaptive filter (DFT-LMS) and the discrete cosine transform LMS adaptive filter (DCT-LMS) for the Markov-2 inputs is presented. To improve the convergence property of the least mean squares (LMS) adaptive filter, the DFT-LMS and DCT-LMS preprocess the inputs with the fixed orthogonal transforms and power normalization. We derive the asymptotic results for the eigenvalues and eigenvalue distributions of the preprocessed input autocorrelation matrices with DFT-LMS and DCT-LMS for Markov-2 inputs. These results explicitly show the superior decorrelation property of DCT-LMS over that of DFT-LMS, and also provide the upper bounds for the eigenvalue spreads of the finite-length DFT-LMS and DCT-LMS adaptive filters. Simulation results are demonstrated to support the analytic results.

History

Available versions

PDF (Published version)

ISBN

9781424417186

Conference name

2008 3rd IEEE Conference on Industrial Electronics and Applications, ICIEA 2008

Pagination

5 pp

Publisher

IEEE

Copyright statement

Copyright © 2008 IEEE. The published version is reproduced in accordance with the copyright policy of the publisher. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC