Swinburne
Browse

Rheology and structural properties of hyperbranched polymers: A non-equilibrium molecular dynamics study

Download (933.16 kB)
conference contribution
posted on 2024-07-26, 14:11 authored by Tu C. Le, Billy ToddBilly Todd, Peter J. Daivis, A. Uhlherr
Hyperbranched polymers are imperfectly branched or irregular tree-like structures that have special properties and potential applications in various areas such as thermoset resins, toughening agents and drug delivery. They can be synthesized economically by one-pot reaction which adapts well to large-scale production but provides a polydisperse mixture of randomly branched polymers with different size and topology. This leads to difficulties in experiments and gives simulation a valuable opportunity to gain further insight in understanding the structure and rheology of hyperbranched structures. They have been simulated using bead-rod models together with Monte Carlo and Brownian dynamics techniques. In this research, hyperbranched polymers were simulated using coarse-grained uniform beads and non-equilibrium molecular dynamics (NEMD) methods. Polymeric chains are composed of interconnected beads interacting via finitely extensible nonlinear elastic (FENE) and Weeks-Chandler-Anderson (WCA) potentials. Viscoelastic properties and structural changes of trifunctional hyperbranched polymers in the melt undergoing planar shear are investigated. Our results are in the range between those of dendrimers and linear analogues of equivalent molecular mass.

History

Available versions

PDF (Published version)

ISBN

9780735405493

ISSN

0094-243X

Journal title

AIP Conference Proceedings

Conference name

AIP

Volume

1027

Issue

1

Pagination

2 pp

Publisher

Springer

Copyright statement

Copyright © 2008 American Institute of Physics. The published version is reproduced in accordance with the copyright policy of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC