Swinburne
Browse

Three-dimensional recording and structuring of chalcogenide glasses by femtosecond pulses

Download (217.22 kB)
conference contribution
posted on 2024-07-09, 23:12 authored by Saulius JuodkazisSaulius Juodkazis, Toshiaki Kondo, Andrei Rode, Shigeki Matsuo, Hiroaki Misawa
We report on three-dimensional (3D) holographic recording in As 2S3 glass using 800 nm wavelength, 150 fs duration pulses. Diffractive beam splitter was used to generate 2-5 beams which were then focused for recording by objective lens of numerical aperture NA = 0.75. The recorded 3D hologram was read out by diffraction of 632 nm HeNe laser beam confirming the expected pattern of holograms. The mechanism of photo-darkening and optical damaging of As2S3 glass and dielectrics in general is discussed. Two-photon absorption cross-section, σ2 = 74.6 × 10-50 cm4/s, was determined by transmission for pulses of 150 fs and 800 nm wavelength. Also, it is demonstrated that the optical damage threshold scales as the bandgap energy for the fluorides. Nano-/ micro-structuring of As2S3 glass by ablation in air will be also demonstrated. High fluence (> 5 J/cm2) irradiation of the 800 nm wavelength, 150 fs duration pulses was used to ablate As 2S3 glass. Self-organized growth of the fibers, rods, and microsphere-type structures was observed. Composition of the nano-/micro-structured material was close to that of the source As 2S3 glass (with up to 20% surplus of sulphur in nano-rods). Straight rods as thin as 20 nm in diameter and over 1 μm-long were obtained. Application potential of nano-/micro-structured As 2S3 glass is discussed.

History

Available versions

PDF (Published version)

ISSN

0277-786X

Journal title

Proceedings of SPIE - The International Society for Optical Engineering

Conference name

SPIE - The International Society for Optical Engineering

Volume

5662

Pagination

5 pp

Publisher

SPIE

Copyright statement

Copyright © 2004 Society of Photo-Optical Instrumentation Engineers. This paper was originally published in Proceedings of SPIE (Vol. 5662), and is available from: http://dx.doi.org/10.1117/12.596322. The published version is reproduced in accordance with the copyright policy of the publisher. One print or electronic copy may be made for personal use only. Systematic electronic or print reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC