Swinburne
Browse
- No file added yet -

A functional pipeline framework for landmark identification on 3D surface extracted from volumetric data

Download (19.48 MB)
journal contribution
posted on 2024-07-12, 18:19 authored by Pan Zheng, Bahari Belaton, Iman Yi Liao, Zainul Ahmad Rajion
Landmarks, also known as feature points, are one of the important geometry primitives that describe the predominant characteristics of a surface. In this study we proposed a self-contained framework to generate landmarks on surfaces extracted from volumetric data. The framework is designed to be a three-fold pipeline structure. The pipeline comprises three phases which are surface construction, crest line extraction and landmark identification. With input as a volumetric data and output as landmarks, the pipeline takes in 3D raw data and produces a 0D geometry feature. In each phase we investigate existing methods, extend and tailor the methods to fit the pipeline design. The pipeline is designed to be functional as it is modularised to have a dedicated function in each phase. We extended the implicit surface polygonizer for surface construction in first phase, developed an alternative way to compute the gradient of maximal curvature for crest line extraction in second phase and finally we combine curvature information and K-means clustering method to identify the landmarks in the third phase. The implementations are firstly carried on a controlled environment, i.e. synthetic data, for proof of concept. Then the method is tested on a small scale data set and subsequently on huge data set. Issues and justifications are addressed accordingly for each phase.

History

Available versions

PDF (Published version)

ISSN

1932-6203

Journal title

PLoS ONE

Volume

12

Issue

11

Article number

article no. e0187558

Publisher

Public Library of Science

Copyright statement

Copyright: © 2017 Zheng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC