Swinburne
Browse
- No file added yet -

A new adaptive backpropagation algorithm based on Lyapunov stability theory for neural networks

Download (1016.88 kB)
journal contribution
posted on 2024-07-13, 04:01 authored by Zhihong ManZhihong Man, Hong Ren Wu, Sophie Liu, Xinghuo Yu
A new adaptive backpropagation (BP) algorithm based on Lyapunov stability theory for neural networks is developed in this paper. It is shown that the candidate of a Lyapunov function V(k) of the tracking error between the output of a neural network and the desired reference signal is chosen first, and the weights of the neural network are then updated, from the output layer to the input layer, in the sense that DeltaV(k)=V(k)-V(k-1)<0. The output tracking error can then asymptotically converge to zero according to Lyapunov stability theory. Unlike gradient-based BP training algorithms, the new Lyapunov adaptive BP algorithm in this paper is not used for searching the global minimum point along the cost-function surface in the weight space, but it is aimed at constructing an energy surface with a single global minimum point through the adaptive adjustment of the weights as the time goes to infinity. Although a neural network may have bounded input disturbances, the effects of the disturbances can be eliminated, and asymptotic error convergence can be obtained. The new Lyapunov adaptive BP algorithm is then applied to the design of an adaptive filter in the simulation example to show the fast error convergence and strong robustness with respect to large bounded input disturbances.

History

Available versions

PDF (Published version)

ISSN

1045-9227

Journal title

IEEE Transactions on Neural Networks

Volume

17

Issue

6

Pagination

11 pp

Publisher

IEEE

Copyright statement

Copyright © 2006 IEEE. The published version is reproduced in accordance with the copyright policy of the publisher. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in oTher works must be obtained from The IEEE.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC