Swinburne
Browse

A real-time fast radio burst: Polarization detection and multiwavelength follow-up

Download (904.14 kB)
journal contribution
posted on 2024-08-06, 09:19 authored by E. Petroff, Matthew BailesMatthew Bailes, Ewan Barr, B. R. Barsdell, N. D. R. Bhat, F. Bian, S. Burke-Spolaor, M. Caleb, D. Champion, P. Chandra, G. Da Costa, C. Delvaux, Christopher FlynnChristopher Flynn, N. Gehrels, J. Greiner, A. Jameson, S. Johnston, M. M. Kasliwal, Evan Keane, S. Keller, J. Kocz, M. Kramer, G. Leloudas, D. Malesani, J. S. Mulchaey, C. Ng, E. O. Ofek, D. A. Perley, A. Possenti, B. P. Schmidt, Y. Shen, B. Stappers, P. Tisserand, Willem van Straten, C. Wolf
Fast radio bursts (FRBs) are one of the most tantalizing mysteries of the radio sky; their progenitors and origins remain unknown and until now no rapid multiwavelength follow-up of an FRB has been possible. New instrumentation has decreased the time between observation and discovery from years to seconds, and enables polarimetry to be performed on FRBs for the first time. We have discovered an FRB (FRB 140514) in real-time on 14 May, 2014 at 17:14:11.06 UTC at the Parkes radio telescope and triggered follow-up at other wavelengths within hours of the event. FRB 140514 was found with a dispersion measure (DM) of 562.7(6) cm−3 pc, giving an upper limit on source redshift of z≲0.5. FRB 140514 was found to be 21±7% (3-σ) circularly polarized on the leading edge with a 1-σ upper limit on linear polarization <10. We conclude that this polarization is intrinsic to the FRB. If there was any intrinsic linear polarization, as might be expected from coherent emission, then it may have been depolarized by Faraday rotation caused by passing through strong magnetic fields and/or high density environments. FRB 140514 was discovered during a campaign to re-observe known FRB fields, and lies close to a previous discovery, FRB 110220; based on the difference in DMs of these bursts and time-on-sky arguments, we attribute the proximity to sampling bias and conclude that they are distinct objects. Follow-up conducted by 12 telescopes observing from X-ray to radio wavelengths was unable to identify a variable multiwavelength counterpart, allowing us to rule out models in which FRBs originate from nearby (z<0.3) supernovae and long duration gamma-ray bursts.

Funding

CE110001020:ARC

SkyMapper and the Southern Sky Survey

Australian Research Council

Find out more...

LF0992131:ARC

History

Available versions

PDF (Published version)

ISSN

1365-2966

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

447

Issue

1

Pagination

9 pp

Publisher

Oxford University Press

Copyright statement

Copyright © 2015. This article has been accepted for publication in the Monthly Notices of the Royal Astronomical Society ©: 2015 The authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC