Swinburne
Browse

Altered expression of alternatively spliced isoforms of the mRNA NMDAR1 receptor in the visual cortex of strabismic cats

Download (158.02 kB)
journal contribution
posted on 2024-07-11, 10:33 authored by Zheng Qin Yin, Ze Min Deng, Sheila G. Crewther, David CrewtherDavid Crewther
PURPOSE: Although much has been written about the role of the NMDA receptor's role in experience dependent visual plasticity, the function of the NMDAR1 receptor subunit in the post-plasticity stage of development is still not well understood. However, in the well studied model of strabismic amblyopia where binocularity is reduced, but where most primary visual cortex neurons can be driven by one or other eye, the density of expression of NMDAR1 receptor protein is significantly reduced, compared to normals. This study aims to identify which of eight isoforms of the spliced heterogeneous variants of the NMDAR1 mRNA receptor gene are associated with this decrease in expression as a means of elucidating possible function. METHODS: A series of digoxygenin-labelled oligonucleotide probes based on the human gene sequence have been used for in situ hybridization (ISH) of sections from the striate cortex of four adult cats. The probes were used to uniquely detect the expression of alternatively spliced mRNA variants in 66,487 cells from sections from the area centralis projection of two normal cats and two cats made esotropic as kittens by tenotomy at two weeks of age. RESULTS: As expected, total NMDAR1 mRNA isoform expression was significantly lower in the striate cortex of strabismic compared to normal cats. The proportion of cortical cells expressing the R1-a, R1-b, and R1-1 isoforms in strabismic animals was decreased while the proportion expressing R1-3 was increased, especially in layers V and VI. No significant difference in expression of the R1-2 and R1-4 isoforms was seen comparing strabismic and normal cats. CONCLUSIONS: These results confirm our previous findings and suggest that transcriptional inhibition of specific isoforms of NMDAR1 mRNA may underlie the change in receptor expression. This preferential reduction in the proportion of neurons bearing particular NMDAR1 isoforms, i.e. isoforms R1-a and b, and R1-1 with partial compensation through the expression of the R1-3 isoform, is more likely related to lowered proportion of binocularly activated neurons in the strabismic cat than to changes in eye dominance or the presence of amblyopia in one eye.

Funding

A role for the outer retina in axial refractive error

National Health and Medical Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

1090-0535

Journal title

Molecular Vision

Volume

7

Pagination

5 pp

Publisher

Molecular Vision

Copyright statement

Copyright © 2001 Molecular Vision. Molecular Vision and the authors. This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives License 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/).

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC