In this paper, we study a system of three coupled van der Pol oscillators that are coupled through the damping terms. Hopf bifurcations and amplitude death induced by the coupling time delay are first investigated by analyzing the related characteristic equation. Then the oscillation patterns of these bifurcating periodic oscillations are determined and we find that there are two kinds of critical values of the coupling time delay: one is related to the synchronous periodic oscillations, the other is related to eight branches of asynchronous periodic solutions bifurcating simultaneously from the zero solution. The stability of these bifurcating periodic solutions are also explicitly determined by calculating the normal forms on center manifolds, and the stable synchronous and stable phase-locked periodic solutions are found. Finally, some numerical simulations are employed to illustrate and extend our obtained theoretical results and numerical studies also describe the switches of stable synchronous and phase-locked periodic oscillations.
Funding
ARC | DP0770420
Numerical analysis of large branch system and its application in the fuel cell system : National Natural Science Foundation of China | 11001212
Wavelet approaches for solving nonlinear dynamic systems in process engineering : Australian Research Council | DP0770420