Swinburne
Browse

Binary colloidal crystals (BCCs) as a feeder-free system to generate human induced pluripotent stem cells (hiPSCs)

Download (2 MB)
journal contribution
posted on 2024-07-26, 14:19 authored by George Wang, Sandy Shen Chi Hung, Helmut Thissen, Peter KingshottPeter Kingshott, Raymond Ching Bong Wong
Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into any cell type and provide significant advances to cell therapy and regenerative medicine. However, the current protocol for hiPSC generation is relatively inefficient and often results in many partially reprogrammed colonies, which increases the cost and reduces the applicability of hiPSCs. Biophysical stimulation, in particular from tuning cell-surface interactions, can trigger specific cellular responses that could in turn promote the reprogramming process. In this study, human fibroblasts were reprogrammed into hiPSCs using a feeder-free system and episomal vectors using novel substrates based on binary colloidal crystals (BCCs). BCCs are made from two different spherical particle materials (Si and PMMA) ranging in size from nanometers to micrometers that self-assemble into hexagonal close-packed arrays. Our results show that the BCCs, particularly those made from a crystal of 2 μm Si and 0.11 μm PMMA particles (2SiPM) facilitate the reprogramming process and increase the proportion of fully reprogrammed hiPSC colonies, even without a vitronectin coating. Subsequent isolation of clonal hiPSC lines demonstrates that they express pluripotent markers (OCT4 and TRA-1-60). This proof-of-concept study demonstrates that cell reprogramming can be improved on substrates where surface properties are tailored to the application.

Funding

Modelling Leberâ s Hereditary Optic Neuropathy using human induced pluripotent stem cells

National Health and Medical Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

2045-2322

Journal title

Scientific Reports

Volume

6

Issue

1

Article number

article no. 36845

Pagination

36845-

Publisher

Nature Publishing Group

Copyright statement

Copyright © 2016 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC