An investigation of the chaotic properties of nonequilibrium atomic systems under planar shear and planar elongational flows is carried out for a constant pressure and temperature ensemble, with the combined use of a Gaussian thermostat and a Nosé-Hoover integral feedback mechanism for pressure conservation. A comparison with Lyapunov spectra of atomic systems under the same flows and at constant volume and temperature shows that, regardless of whether the underlying algorithm describing the flow is symplectic, the degrees of freedom associated with the barostat have no overall influence on chaoticity and the general conjugate pairing properties are independent of the ensemble. Finally, the dimension of the strange attractor onto which the phase space collapses is found not to be significantly altered by the presence of the Nosé-Hoover barostatting mechanism.