Swinburne
Browse

Coarsening modes of clusters of aggregating particles

Download (844.46 kB)
journal contribution
posted on 2024-07-09, 16:37 authored by Andriy PototskyyAndriy Pototskyy, Uwe Thiele, Andrew J. Archer
There are two modes by which clusters of aggregating particles can coalesce: The clusters can merge either (i) by the Ostwald ripening process, in which particles diffuse from one cluster to the other while the cluster centers remain stationary, or (ii) by means of a cluster translation mode, in which the clusters move toward each other and join. To understand in detail the interplay between these different modes, we study a model system of hard particles with an additional attraction between them. The particles diffuse along narrow channels with smooth or periodically corrugated walls, so that the system may be treated as one-dimensional. When the attraction between the particles is strong enough, they aggregate to form clusters. The channel potential influences whether clusters can move easily or not through the system and can prevent cluster motion. We use dynamical density functional theory to study the dynamics of the aggregation process, focusing in particular on the coalescence of two equal-sized clusters. As long as the particle hard-core diameter is nonzero, we find that the coalescence process can be halted by a sufficiently strong corrugation potential. The period of the potential determines the size of the final stable clusters. For the case of smooth channel walls, we demonstrate that there is a crossover in the dominance of the two different coarsening modes, which depends on the strength of the attraction between particles, the cluster sizes, and the separation distance between clusters.

History

Available versions

PDF (Published version)

ISSN

1539-3755

Journal title

Physical Review E

Volume

89

Issue

3

Article number

article no. 032144

Pagination

10 pp

Publisher

American Physical Society

Copyright statement

Copyright © 2014 American Physical Society. The published version is reproduced in accordance with the copyright policy of the publisher.

Language

eng

Usage metrics

    Publications

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC