Swinburne
Browse

Collective oscillations of a confined Bose gas at finite temperature in the random-phase approximation

Download (618.03 kB)
journal contribution
posted on 2024-07-11, 11:59 authored by Xiaji LiuXiaji Liu, Hui HuHui Hu, A. Minguzzi, M. P. Tosi
We present a theory for the linear dynamics of a weakly interacting Bose gas confined inside a harmonic trap at finite temperature. The theory treats the motions of the condensate and of the noncondensate on an equal footing within a generalized random-phase approximation, which (i) extends the second-order Beliaev-Popov approach by allowing for the dynamical coupling between fluctuations in the thermal cloud, and (ii) reduces to an earlier random-phase scheme when the anomalous density fluctuations are omitted. Numerical calculations of the low-lying spectra in the case of isotropic confinement show that the present theory obeys with high accuracy the generalized Kohn theorem for the dipolar excitations and demonstrate that combined normal and anomalous density fluctuations play an important role in the monopolar excitations of the condensate. Mean-field theory is instead found to yield accurate results for the quadrupolar modes of the condensate. Although the restriction to spherical confinement prevents quantitative comparisons with measured spectra, it appears that the non-mean-field effects that we examine may be relevant to explain the features exhibited by the breathing mode as a function of temperature in the experiments carried out at JILA on a gas of ^87Rb atoms.

History

Available versions

PDF (Accepted manuscript)

ISSN

1050-2947

Journal title

Physical Review A - Atomic, Molecular, and Optical Physics

Volume

69

Issue

4

Article number

article no. 043605

Publisher

American Physical Society

Copyright statement

Copyright © 2004 The American Physical Society. The accepted manuscript is reproduced for noncommerical purposes only in accordance with the copyright policy of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC