Swinburne
Browse

Curious properties of the recycled pulsars and the potential of high precision timing

Download (344.31 kB)
journal contribution
posted on 2024-07-09, 16:56 authored by Matthew BailesMatthew Bailes
Binary and Millisecond pulsars have a great deal to teach us about stellar evolution and are invaluable tools for tests of relativistic theories of gravity. Our understanding of these objects has been transformed by large-scale surveys that have uncovered a great deal of new objects, exquisitely timed by ever-improving instrumentation. Here we argue that there exists a fundamental relation between the spin period of a pulsar and its companion mass, and that this determines many of the observable properties of a binary pulsar. No recycled pulsars exist in which the minimum companion mass exceeds (P/10 ms) Mcircled dot operator. Furthermore, the three fastest disk millisecond pulsars are either single, or possess extremely low-mass companions (Mc not, vert, similar 0.02 Mcircled dot operator), consistent with this relation. Finally, the four relativistic binaries for which we have actual measurements of neutron star masses, suggest that not only are their spin periods related to the companion neutron star mass, but that the kick imparted to the system depends upon it too, leading to a correlation between orbital eccentricity and spin period. The isolation of the relativistic binary pulsars in the magnetic field-Period diagram is used to argue that this must be because the kicks imparted to proto-relativistic systems are usually small, leading to very few if any isolated runaway mildly-recycled pulsars. This calls into question the magnitude of supernova kicks in close binaries, which have been usually assumed to be similar to those imparted to the bulk of the pulsar population. Finally, we review some of the highlights of the Parkes precision timing efforts, which suggest 10 ns timing is obtainable on PSR J1909-3744 that will aid us in searching for a cosmological sources of gravitational waves.

History

Available versions

PDF (Accepted manuscript)

ISSN

1387-6473

Journal title

New Astronomy Reviews

Volume

54

Issue

3-6

Pagination

80-86

Publisher

Elsevier

Copyright statement

Copyright © 2010 Elsevier B.V. The accepted manuscript is reproduced in accordance with the copyright policy of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC