Swinburne
Browse

DYNAMICAL INTERACTIONS MAKE HOT JUPITERS in OPEN STAR CLUSTERS

Download (432.48 kB)
journal contribution
posted on 2024-07-26, 14:00 authored by Michael M. Shara, Jarrod HurleyJarrod Hurley, Rosemary A. Mardling
Explaining the origin and evolution of exoplanetary hot Jupiters remains a significant challenge. One possible mechanism for the production of hot Jupiters is planet-planet interactions, which produce them from planets born far from their host stars but near their dynamical stability limits. In the much more likely case of planets born far from their dynamical stability limits, can hot Jupiters be formed in star clusters? Our N-body simulations answer this question in the affirmative, and show that hot Jupiter formation is not a rare event, occurring in ∼1% of star cluster planetary systems. We detail three case studies of the dynamics-induced births of hot Jupiters on highly eccentric orbits that can only occur inside star clusters. The hot Jupiters' orbits bear remarkable similarities to those of some of the most extreme exoplanets known: HAT-P-32b, HAT-P-2b, HD 80606b, and GJ 876d. If stellar perturbations formed these hot Jupiters, then our simulations predict that these very hot inner planets are often accompanied by much more distant gas giants in highly eccentric orbits.

History

Available versions

PDF (Published version)

ISSN

1538-4357

Journal title

Astrophysical Journal

Volume

816

Issue

2

Article number

article no. 59

Pagination

7 pp

Publisher

IOP Publishing

Copyright statement

Copyright © 2016 The American Astronomical Society. The published version is reproduced in accordance with the copyright policy of the publisher and can be also be located at https://doi.org/10.3847/0004-637X/816/2/59

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC