Swinburne
Browse

Dark-ages reionization and galaxy formation simulation - XIV. Gas accretion, cooling, and star formation in dwarf galaxies at high redshift

Download (7.1 MB)
journal contribution
posted on 2024-07-26, 14:41 authored by Yuxiang Qin, Alan DuffyAlan Duffy, Simon J. Mutch, Gregory B. Poole, Paul M. Geil, Andrei Mesinger, J Stuart B. Wyithe
We study dwarf galaxy formation at high redshift (z >= 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling, and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose three modifications to SAMs that will provide more accurate high-redshift simulations. These include (1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; (2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and (3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

Funding

ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

0035-8711

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

477

Issue

1

Pagination

17 pp

Publisher

Oxford University Press (OUP)

Copyright statement

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2018 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Language

eng

Usage metrics

    Publications

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC