Swinburne
Browse
- No file added yet -

Dark Energy Survey Year 1 results: Cross-correlation redshifts - methods and systematics characterization

Download (1.31 MB)
journal contribution
posted on 2024-08-06, 11:32 authored by M. Gatti, P. Vielzeuf, C. Davis, R. Cawthon, M. M. Rau, J. DeRose, J. De Vicente, A. Alarcon, E. Rozo, E. Gaztanaga, B. Hoyle, R. Miquel, G. M. Bernstein, C. Bonnett, A. Carnero Rosell, F. J. Castander, C. Chang, L. N. da Costa, D. Gruen, J. Gschwend, W. G. Hartley, H. Lin, N. MacCrann, M. A.G. Maia, R. L.C. Ogando, A. Roodman, I. Sevilla-Noarbe, M. A. Troxel, R. H. Wechsler, Jacobo Asorey Barreiro, T. M. Davis, Karl GlazebrookKarl Glazebrook, S. R. Hinton, G. Lewis, C. Lidman, E. Macaulay, Anais MollerAnais Moller, C. R. O'Neill, N. E. Sommer, S. A. Uddin, F. Yuan, B. Zhang, T. M.C. Abbott, S. Allam, J. Annis, K. Bechtol, D. Brooks, D. L. Burke, D. Carollo, M. Carrasco Kind, J. Carretero, C. E. Cunha, C. B. D'Andrea, D. L. DePoy, S. Desai, T. F. Eifler, A. E. Evrard, B. Flaugher, P. Fosalba, J. Frieman, J. García-Bellido, D. W. Gerdes, D. A. Goldstein, R. A. Gruendl, G. Gutierrez, K. Honscheid, J. K. Hoormann, B. Jain, D. J. James, M. Jarvis, T. Jeltema, M. W.G. Johnson, M. D. Johnson, E. Krause, K. Kuehn, S. Kuhlmann, N. Kuropatkin, T. S. Li, M. Lima, J. L. Marshall, P. Melchior, F. Menanteau, R. C. Nichol, B. Nord, A. A. Plazas, K. Reil, E. S. Rykoff, M. Sako, E. Sanchez, V. Scarpine, M. Schubnell, E. Sheldon, M. Smith, R. C. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, M. E.C. Swanson, G. Tarle, D. Thomas, B. E. Tucker, D. L. Tucker, V. Vikram, A. R. Walker, J. Weller, W. Wester, R. C. Wolf
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample.We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.

Funding

CE110001020:ARC

Weighing Black Holes with The Australian Dark Energy Survey

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

1365-2966

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

477

Issue

2

Pagination

18 pp

Publisher

Oxford University Press

Copyright statement

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2018 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC