Swinburne
Browse

Design of photonic-crystal and wire waveguide interface

Download (331.9 kB)
journal contribution
posted on 2024-07-13, 02:09 authored by Lorenzo Rosa, Stefano Selleri, Federica Poli
The coupling of light between wire-dielectric and photonic-crystal waveguides, characterized by a triangular lattice of air holes, is investigated through a finite-element time domain (FE-TD) approach, in order to optimize the transmission spectrum. The displacement of the inner-hole rows of the photonic-crystal waveguide, on both sides of the interface, has been shown to considerably improve the coupling, resulting in transmission values higher than 90% and 95% over bandwidths of hundreds of nanometers around 1550 nm. The new design approach is successfully proposed for input and output waveguides with width equal to √3Λ, as well as for larger widths, like 2√3Λ and 3√3Λ, with Λ being the period of the photonic crystal.

History

Available versions

PDF (Published version)

ISSN

0733-8724

Journal title

Journal of Lightwave Technology

Volume

23

Issue

9

Pagination

5 pp

Publisher

IEEE

Copyright statement

Copyright © 2005 IEEE. The published version is reproduced in accordance with the copyright policy of the publisher. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC