Swinburne
Browse

Deterministic bit-stream digital neurons

Download (2.29 MB)
journal contribution
posted on 2024-07-26, 14:59 authored by David Braendler, Tim HendtlassTim Hendtlass, Peter G. O'Donoghue
In this paper, we present the design of a deterministic bit-stream neuron, which makes use of the memory rich architecture of fine-grained field-programmable gate arrays (FPGAs). It is shown that deterministic bit streams provide the same accuracy as much longer stochastic bit streams. As these bit streams are processed serially, this allows neurons to be implemented that are much faster than those that utilize stochastic logic. Furthermore, due to the memory rich architecture of fine-grained FPGAs, these neurons still require only a small amount of logic to implement. The design presented here has been implemented on a Virtex FPGA, which allows a very regular layout facilitating efficient usage of space. This allows for the construction of neural networks large enough to solve complex tasks at a speed comparable to that provided by commercially available neural-network hardware.

History

Available versions

PDF (Published version)

ISSN

1045-9227

Journal title

IEEE transactions on neural networks

Volume

13

Issue

6

Pagination

11 pp

Publisher

IEEE

Copyright statement

Copyright © 2002 IEEE. The published version is reproduced in accordance with the copyright policy of the publisher. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC