Swinburne
Browse

Dual-Stage Actuator Control Design Using a Doubly Coprime Factorization Approach

Download (505.44 kB)
journal contribution
posted on 2024-07-09, 16:03 authored by Jinchuan ZhengJinchuan Zheng, Weizhou Weizhou Su, Minyue Minyue Fu
This paper first reveals that the tracking and disturbance rejection problems can be decoupled into two independent optimization problems under the 2-DOF control framework. This result is then used for the design of a 2-DOF controller for a dual-stage actuator (DSA) system to provide desired performance of disturbance rejection and step tracking. The 2-DOF controller is designed based on the doubly coprime factorization approach, with which the closed-loop transfer function is expressed explicitly in terms of design parameters. This greatly simplifies the optimization of design parameters in meeting desired specifications. We further study how to use the design parameters to deal with specific problems in the DSA, i.e., control allocation and trajectory planning. For step tracking beyond the secondary actuator range, a nonlinear controller is also used for the primary actuator to complete the task. Experimental results demonstrate the practical implementation of the DSA control system and verify its effectiveness for step tracking and disturbance rejection and its robust performance under load changes.

History

Available versions

PDF (Published version)

ISSN

1083-4435

Journal title

IEEE/ASME Transactions on Mechatronics

Volume

15

Issue

3

Pagination

9 pp

Publisher

IEEE

Copyright statement

Copyright © 2010 IEEE. The published version is reproduced in accordance with the copyright policy of the publisher. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC