Swinburne
Browse

Effect of heat accumulation on the dynamic range of a gold nanorod doped polymer nanocomposite for optical laser writing and patterning

Download (749.89 kB)
journal contribution
posted on 2024-07-09, 23:36 authored by Peter Zijlstra, James ChonJames Chon, Min Gu
Even though gold nanorod doped dielectrics have been widely used for optical laser writing and patterning there has been no attempt to study the dynamic range of these nanocomposites, let alone exploring ways to improve this property. Here we study the dynamic range of a gold nanorod doped polyvinyl alcohol film for various laser spot sizes at two different laser pulse repetition rates and show that when a high repetition rate laser source is employed the dynamic range of the nanocomposite is severely limited due to accumulative heating inside the focal volume. This problem could be solved by silica-coating the nanorods inside the polymer matrix. This method does not compromise the high repetition rate of the laser writing source and yet retains the attractive flexible properties of the polymer matrix. The silica-coated gold nanorod doped polymer nanocomposite could be an attractive medium for future high-speed, high repetition rate pulsed laser writing and patterning applications.

History

Available versions

PDF (Published version)

ISSN

1094-4087

Journal title

Optics Express

Volume

15

Issue

19

Pagination

12151-12160

Publisher

Optical Society of America

Copyright statement

Copyright © 2007 Optical Society of America. The published version is reproduced in accordance with the copyright policy of the publisher. This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.15.012151. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC