Swinburne
Browse

Enhanced attachment of human mesenchymal stem cells on nanograined titania surfaces

Download (5.74 MB)
journal contribution
posted on 2024-07-26, 14:09 authored by Jalal Azadmanjiri, George Wang, Hitesh Pingle, Peter KingshottPeter Kingshott, James WangJames Wang, Vijay K. Srivastava, Ajay KapoorAjay Kapoor
Surface nanostructures have shown potential as biomaterials, in tissue engineering and regenerative medicine devices since they have been shown to enhance cellular function by modulating cell-surface interactions in a controlled manner. This work studies human stem cell behavior on titanium dioxide (TiO2) nanotubes that were fabricated on nano-grained (NG) and coarse-grained (CG) substrates. The NG substrates were derived by surface mechanical attrition treatment (SMAT), which has the advantage of being simple to implement. The TiO2 nanotube layer formed on the SMATed titanium (Ti) is thicker and has an inner diameter (70 nm) greater than a comparable layer observed on an untreated (40 nm) substrate. The results illustrate that a NG Ti layer favors the growth of TiO2 nanotubes; presumably due to the high density of grain boundaries and dislocations. An increase in adhesion of human mesenchymal stem cells (hMSCs) in short term culture was observed on the TiO2 nanotubes grown on the NG substrate compared to those grown on the CG substrate, which we attribute to the various roughness and hydrophilicity differences between the two surfaces. Additionally, higher specific strengths of the TiO2 nanotubes may also be achieved by taking advantage of the Ti grain changes on the substrate and the subsequent growth of the nanotubes. Furthermore, structural deformations at the nanoscale can be exploited to manufacture advanced biomaterial surfaces that are designed to enable improved stem cell attachment.

Funding

Regulation of cell reprogramming to pluripotency by complex topographies

Australian Research Council

Find out more...

History

Available versions

PDF (Accepted manuscript)

ISSN

2046-2069

Journal title

RSC Advances

Volume

6

Issue

61

Pagination

8 pp

Publisher

Royal Society of Chemistry

Copyright statement

Copyright © 2016 The Royal Society of Chemistry. The authors final manuscript version is reproduced here in accordance with the copyright policy of the publisher. The published version is available at http://dx.doi.org/10.1039/c6ra10289a

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC