Swinburne
Browse

European Pulsar Timing Array limits on continuous gravitational waves from individual supermassive black hole binaries

Download (1.45 MB)
journal contribution
posted on 2024-08-06, 12:21 authored by S. Babak, A. Petiteau, A. Sesana, P. Brem, P. A. Rosado, S. R. Taylor, A. Lassus, J. W. T. Hessels, C. G. Bassa, M. Burgay, R. N. Caballero, D. J. Champion, I. Cognard, G. Desvignes, J. R. Gair, L. Guillemot, G. H. Janssen, R. Karuppusamy, M. Kramer, P. Lazarus, K. J. Lee, L. Lentati, K. Liu, C. M. F. Mingarelli, S. Oslowski, D. Perrodin, A. Possenti, M. B. Purver, S. Sanidas, R. Smits, B. Stappers, G. Theureau, C. Tiburzi, R. van Haasteren, A. Vecchio, J. P. W. Verbiest
We have searched for continuous gravitational wave (CGW) signals produced by individually resolvable, circular supermassive black hole binaries (SMBHBs) in the latest European Pulsar Timing Array (EPTA) data set, which consists of ultraprecise timing data on 41-ms pulsars. We develop frequentist and Bayesian detection algorithms to search both for monochromatic and frequency-evolving systems. None of the adopted algorithms show evidence for the presence of such a CGW signal, indicating that the data are best described by pulsar and radiometer noise only. Depending on the adopted detection algorithm, the 95 per cent upper limit on the sky-averaged strain amplitude lies in the range 6 x 10(-15) < A < 1.5 x 10(-14) at 5 nHz < f < 7 nHz. This limit varies by a factor of five, depending on the assumed source position and the most constraining limit is achieved towards the positions of the most sensitive pulsars in the timing array. The most robust upper limit - obtained via a full Bayesian analysis searching simultaneously over the signal and pulsar noise on the subset of ours six best pulsars - is A approximate to 10(-14). These limits, the most stringent to date at f < 10 nHz, exclude the presence of sub-centiparsec binaries with chirp mass M-c > 10(9) M-circle dot out to a distance of about 25 Mpc, and with M-c > 10(10) M-circle dot out to a distance of about 1Gpc (z approximate to 0.2). We show that state-of-the-art SMBHB population models predict < 1 per cent probability of detecting a CGW with the current EPTA data set, consistent with the reported non-detection. We stress, however, that PTA limits on individual CGW have improved by almost an order of magnitude in the last five years. The continuing advances in pulsar timing data acquisition and analysis techniques will allow for strong astrophysical constraints on the population of nearby SMBHBs in the coming years.

Funding

Alexander von Humboldt Foundation

Science and Technology Facilities Council

Research England

European Research Council

Aspen Center For Physics

National Natural Science Foundation of China

Institut National des Sciences de l'Univers

Jet Propulsion Laboratory

Dutch Research Council

Directorate for Mathematical & Physical Sciences

Royal Society

History

Available versions

PDF (Published version)

ISSN

0035-8711

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

455

Issue

2

Pagination

14 pp

Publisher

Oxford University Press

Copyright statement

This article has been accepted for publication in the Monthly Notices of the Royal Astronomical Society. Copyright © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC