Swinburne
Browse
- No file added yet -

Explaining the reportedly overmassive black holes in early-type galaxies with intermediate-scale discs

Download (1019.28 kB)
journal contribution
posted on 2024-07-26, 14:07 authored by Giulia Savorgnan, Alister GrahamAlister Graham
The classification 'early-type' galaxy includes both elliptically and lenticular-shaped galaxies. Theoretically, the spheroid-to-disc flux ratio of an early-type galaxy can assume any positive value, but in practice studies often consider only spheroid/disc decompositions in which the disc neatly dominates over the spheroid at large galaxy radii, creating an inner 'bulge' as observed in most spiral galaxies. Here we show that decompositions in which the disc remains embedded within the spheroid, labelled by some as 'unphysical', correctly reproduce both the photometric and kinematic properties of early-type galaxies with intermediate-scale discs. Intermediate-scale discs have often been confused with large-scale discs and incorrectly modelled as such; when this happens, the spheroid luminosity is considerably underestimated. This has recently led to some surprising conclusions, such as the claim that a number of galaxies with intermediate-scale discs (Mrk 1216, NGC 1277, NGC 1271, and NGC 1332) host a central black hole whose mass is abnormally large compared to expectations from the (underestimated) spheroid luminosity. We show that when these galaxies are correctly modelled, they no longer appear as extreme outliers in the (black hole mass)-(spheroid mass) diagram. This not only nullifies the need for invoking different evolutionary scenarios for these galaxies but it strengthens the significance of the observed (black hole mass)-(spheroid mass) correlation and confirms its importance as a fundamental ingredient for theoretical and semi-analytic models used to describe the coevolution of spheroids and their central supermassive black holes.

Funding

The hearts of galaxies

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

0035-8711

Journal title

Mon. Not. R. Astron. Soc.

Volume

457

Issue

1

Pagination

7 pp

Publisher

Oxford University Press

Copyright statement

This article has been accepted for publication in the Monthly Notices of the Royal Astronomical Society. Copyright © 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC