Swinburne
Browse

Faraday instability of a two-layer liquid film with a free upper surface

Download (712.89 kB)
journal contribution
posted on 2024-07-09, 22:17 authored by Andriy PototskyyAndriy Pototskyy, Michael Bestehorn
We study the linear stability of a laterally extended flat two-layer liquid film under the influence of external vertical vibration. The first liquid layer rests on a vibrating solid plate and is overlaid by a second layer of immiscible fluid with deformable upper surface. Surface waves, excited as the result of the Faraday instability, can be characterized by a time-dependent relative amplitude of the displacements of the liquid-liquid and the liquid-gas interfaces. The in-phase displacements are associated with a zigzag (barotropic) mode and the antiphase displacement corresponds to the varicose thinning mode. We numerically determine the stability threshold in the vibrated two-layer film and compute the dispersion relation together with the decay rates of the surface waves in the absence of vibration. The in-phase and the antiphase displacements are strongly coupled in the vibrated system. The interplay between the Faraday and the Rayleigh-Taylor instabilities in the system with heavier fluid on top of a lighter fluid is analyzed.

History

Available versions

PDF (Published version)

ISSN

2469-990X

Journal title

Physical Review Fluids

Volume

1

Issue

2

Article number

article no. 023901

Pagination

1 p

Publisher

American Physical Society

Copyright statement

Copyright © 2016 American Physical Society. The published version is reproduced in accordance with the copyright policy of the publisher.

Language

eng

Usage metrics

    Publications

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC