Swinburne
Browse

Fast and accurate protein substructure searching with simulated annealing and GPUs

Download (1.16 MB)
journal contribution
posted on 2024-07-10, 01:29 authored by Alexander Stivala, Peter J. Stuckey, Anthony I. Wirth
Background: Searching a database of protein structures for matches to a query structure, or occurrences of a structural motif, is an important task in structural biology and bioinformatics. While there are many existing methods for structural similarity searching, faster and more accurate approaches are still required, and few current methods are capable of substructure (motif) searching. Results: We developed an improved heuristic for tableau-based protein structure and substructure searching using simulated annealing, that is as fast or faster and comparable in accuracy, with some widely used existing methods. Furthermore, we created a parallel implementation on a modern graphics processing unit (GPU). Conclusions: The GPU implementation achieves up to 34 times speedup over the CPU implementation of tableau-based structure search with simulated annealing, making it one of the fastest available methods. To the best of our knowledge, this is the first application of a GPU to the protein structural search problem.

History

Available versions

PDF (Published version)

ISSN

1471-2105

Journal title

BMC Bioinformatics

Volume

11

Issue

446

Publisher

BioMed Central

Copyright statement

© 2010 Stivala et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC