Swinburne
Browse

Flexibly tunable high-quality-factor induced transparency in plasmonic systems

Download (3.3 MB)
journal contribution
posted on 2024-07-11, 09:31 authored by Hua Lu, Xuetao Gan, Dong Mao, Baohua Jia, Jianlin Zhao
The quality (Q) factor and tunability of electromagnetically induced transparency (EIT)-like effect in plasmonic systems are restrained by the intrinsic loss and weak adjustability of metals, limiting the performance of the devices including optical sensor and storage. Exploring new schemes to realize the high Q-factor and tunable EIT-like effect is particularly significant in plasmonic systems. Here, we present an ultrahigh Q-factor and flexibly tunable EIT-like response in a novel plasmonic system. The results illustrate that the induced transparency distinctly appears when surface plasmon polaritons excited on the metal satisfy the wavevector matching condition with the guided mode in the high-refractive index (HRI) layer. The Q factor of the EIT-like spectrum can exceed 2000, which is remarkable compared to that of other plasmonic systems such as plasmonic metamaterials and waveguides. The position and lineshape of EIT-like spectrum are strongly dependent on the geometrical parameters. An EIT pair is generated in the splitting absorption spectra, which can be easily controlled by adjusting the incident angle of light. Especially, we achieve the dynamical tunability of EIT-like spectrum by changing the Fermi level of graphene inserted in the system. Our results will open a new avenue toward the plasmonic sensing, spectral shaping and switching.

History

Available versions

PDF (Published version)

ISSN

2045-2322

Journal title

Scientific Reports

Volume

8

Issue

1

Article number

article no. 1558

Pagination

1 p

Publisher

Nature Publishing Group

Copyright statement

Copyright © 2018 The Author(s). Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC