Swinburne
Browse
- No file added yet -

Fulde-Ferrell-Larkin-Ovchinnikov states in one-dimensional spin-polarized ultracold atomic Fermi gases

Download (2 MB)
journal contribution
posted on 2024-07-10, 00:44 authored by Xiaji LiuXiaji Liu, Hui HuHui Hu, Peter DrummondPeter Drummond
We present a systematic study of quantum phases in a one-dimensional spin-polarized Fermi gas. Three comparative theoretical methods are used to explore the phase diagram at zero temperature: the mean-field theory with either an order parameter in a single-plane-wave form or a self-consistently determined order parameter using the Bogoliubov-de Gennes equations, as well as the exact Bethe ansatz method. We find that a spatially inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov phase, which lies between the fully paired Bardeen-Cooper-Schrieffer (BCS) state and the fully polarized normal state, dominates most of the phase diagram of a uniform gas. The phase transition from the BCS state to the Fulde-Ferrell-Larkin-Ovchinnikov phase is of second order, and therefore there are no phase separation states in one-dimensional homogeneous polarized gases. This is in sharp contrast to the three-dimensional situation, where a phase separation regime is predicted to occupy a very large space in the phase diagram. We conjecture that the prediction of the dominance of the phase separation phases in three dimension could be an artifact of the non-self-consistent mean-field approximation, which is heavily used in the study of three-dimensional polarized Fermi gases. We consider also the effect of a harmonic trapping potential on the phase diagram, and find that in this case the trap generally leads to phase separation, in accord with the experimental observations for a trapped gas in three dimensions. We finally investigate the local fermionic density of states of the Fulde-Ferrell-Larkin-Ovchinnikov ansatz. A two-energy-gap structure appears, which could be used as an experimental probe of the Fulde-Ferrell-Larkin-Ovchinnikov states.

History

Available versions

PDF (Published version)

ISSN

1050-2947

Journal title

Physical Review A - Atomic, Molecular, and Optical Physics

Volume

76

Issue

4

Article number

article no. 043605

Publisher

American Physical Society

Copyright statement

Copyright © 2007 The American Physical Society. The published version is reproduced in accordance with the copyright policy of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC