Swinburne
Browse

Fulde-Ferrell pairing instability of a Rashba spin-orbit-coupled Fermi gas

Download (562.7 kB)
journal contribution
posted on 2024-07-11, 07:38 authored by Xiaji LiuXiaji Liu
We theoretically analyze the pairing instability of a three-dimensional ultracold atomic Fermi gas towards a Fulde-Ferrell superfluid, in the presence of Rashba spin-orbit coupling and in-plane Zeeman field. We use the standard Thouless criterion for the onset of superfluidity, with which the effect of pair fluctuations is partially taken into account by approximately using a mean-field chemical potential at zero temperature. This gives rise to an improved prediction of the superfluid transition temperature beyond mean field, particularly in the strong-coupling unitary limit. We also investigate the pairing instability with increasing Rashba spin-orbit coupling, along the crossover from a Bardeen-Cooper-Schrieffer superfluid to a Bose-Einstein condensate of rashbons (i.e., the tightly bound state of two fermions formed by strong Rashba spin-orbit coupling).

Funding

Imbalanced superfluidity: The quantum mystery that defies solution

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

1050-2947

Journal title

Phys. Rev. A

Volume

88

Issue

4

Article number

article no. 043607

Pagination

6 pp

Publisher

American Physical Society

Copyright statement

Copyright © 2013 American Physical Society. the published version is reproduced with the permission of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC