posted on 2024-08-06, 11:01authored byL. J. M. Davies, M. T. Huynh, A. M. Hopkins, N. Seymour, S. P. Driver, A. G. R. Robotham, I. K. Baldry, J. Bland-Hawthorn, N. Bourne, M. N. Bremer, M. J. I. Brown, S. Brough, Michelle CluverMichelle Cluver, M. W. Grootes, M. Jarvis, J. Loveday, A. Moffet, S. Phillipps, M. Owers, E. Sadler, L. Wang, S. Wilkins, A. Wright
We present a robust calibration of the 1.4 GHz radio continuum star formation rate (SFR) using a combination of the Galaxy And Mass Assembly (GAMA) survey and the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey. We identify individually detected 1.4 GHz GAMA-FIRST sources and use a late-type, non-active galactic nucleus, volume-limited sample from GAMA to produce stellar mass-selected samples. The latter are then combined to produce FIRST-stacked images. This extends the robust parametrization of the 1.4 GHz-SFR relation to faint luminosities. For both the individually detected galaxies and our stacked samples, we compare 1.4 GHz luminosity to SFRs derived from GAMA to determine a new 1.4 GHz luminosity-to-SFR relation with well-constrained slope and normalization. For the first time, we produce the radio SFR-M* relation over 2 decades in stellar mass, and find that our new calibration is robust, and produces a SFR-M* relation which is consistent with all other GAMA SFR methods. Finally, using our new 1.4 GHz luminosity-to-SFR calibration we make predictions for the number of star-forming GAMA sources which are likely to be detected in the upcoming Australian Square Kilometre Array Pathfinder surveys, Evolutionary Map of the Universe and Deep Investigation of Neutral Gas Origins.