Swinburne
Browse

Gap formation in the dust layer of 3D protoplanetary disks

Download (2.17 MB)
journal contribution
posted on 2024-07-26, 14:27 authored by Sarah MaddisonSarah Maddison, L. Fouchet, J. F. Gonzalez
We numerically model the evolution of dust in a protoplanetary disk using a two-phase (gas+dust) Smoothed Particle Hydrodynamics (SPH) code, which is non-self-gravitating and locally isothermal. The code follows the three dimensional distribution of dust in a protoplanetary disk as it interacts with the gas via aerodynamic drag. In this work, we present the evolution of a disk comprising 1% dust by mass in the presence of an embedded planet for two different disk configurations: a small, minimum mass solar nebular (MMSN) disk and a larger, more massive Classical T Tauri star (CTTS) disk. We then vary the grain size and planetary mass to see how they effect the resulting disk structure. We find that gap formation is much more rapid and striking in the dust layer than in the gaseous disk and that a system with a given stellar, disk and planetary mass will have a different appearance depending on the grain size and that such differences will be detectable in the millimetre domain with ALMA. For low mass planets in our MMSN models, a gap can open in the dust disk while not in the gas disk. We also note that dust accumulates at the external edge of the planetary gap and speculate that the presence of a planet in the disk may facilitate the growth of planetesimals in this high density region.

History

Available versions

PDF (Accepted manuscript)

ISSN

0004-640X

Journal title

Astrophysics and Space Science

Volume

311

Issue

1-3

Pagination

4 pp

Publisher

Springer

Copyright statement

Copyright © 2007 Springer Science+Business Media B.V. The accepted manuscript is reproduced in accordance with the copyright policy of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC