Swinburne
Browse
- No file added yet -

H-ATLAS/GAMA: quantifying the morphological evolution of the galaxy population using cosmic calorimetry

Download (3.14 MB)
journal contribution
posted on 2024-08-06, 09:47 authored by Stephen Eales, Andrew Fullard, Matthew Allen, M. W. L. Smith, Ivan Baldry, Nathan Bourne, C. J. R. Clark, Simon Driver, Loretta Dunne, Simon Dye, Alister GrahamAlister Graham, Edo Ibar, Andrew Hopkins, Rob Ivison, Lee S. Kelvin, Steve Maddox, Claudia Maraston, Aaron S. G. Robotham, Dan Smith, Edward TaylorEdward Taylor, Elisabetta Valiante, Paul van der Werf, Maarten Baes, Sarah Brough, David Clements, Asantha Cooray, Haley Gomez, Jon Loveday, Steven Phillipps, Douglas Scott, Steve Serjeant
Using results from the Herschel Astrophysical Terrahertz Large-Area Survey (H-ATLAS) and the Galaxy and Mass Assembly (GAMA) project, we show that, for galaxy masses above ≃ 108 M⊙, 51 per cent of the stellar mass-density in the local Universe is in early-type galaxies (ETGs; Sérsic n > 2.5) while 89 per cent of the rate of production of stellar mass-density is occurring in late-type galaxies (LTGs; Sérsic n < 2.5). From this zero-redshift benchmark, we have used a calorimetric technique to quantify the importance of the morphological transformation of galaxies over the history of the Universe. The extragalactic background radiation contains all the energy generated by nuclear fusion in stars since the big bang. By resolving this background radiation into individual galaxies using the deepest far-infrared survey with the Herschel Space Observatory and a deep near-infrared/optical survey with the Hubble Space Telescope (HST), and using measurements of the Sérsic index of these galaxies derived from the HST images, we estimate that ≃83 per cent of the stellar mass-density formed over the history of the Universe occurred in LTGs. The difference between this value and the fraction of the stellar mass-density that is in LTGs today implies there must have been a major transformation of LTGs into ETGs after the formation of most of the stars.

Funding

National Aeronautics and Space Administration

European Research Council

Science and Technology Facilities Council

History

Available versions

PDF (Published version)

ISSN

0035-8711

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

452

Issue

4

Pagination

18 pp

Publisher

Oxford University Press

Copyright statement

Copyright © 2015. This article has been accepted for publication in the Monthly Notices of the Royal Astronomical Society ©: 2015 The authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC