Swinburne
Browse

How to get cool in the heat: Comparing analytic models of hot, cold and cooling gas in haloes and galaxies with EAGLE

Download (2.03 MB)
journal contribution
posted on 2024-07-26, 14:20 authored by Adam R. H. Stevens, Claudia del P. Lagos, Sergio Contreras, Darren CrotonDarren Croton, Nelson D. Padilla, Matthieu Schaller, Joop Schaye, Tom Theuns
We use the hydrodynamic, cosmological EAGLE simulations to investigate how the hot gas in haloes condenses to form and grow galaxies. We select haloes from the simulations that are actively cooling and study the temperature, distribution and metallicity of their hot, cold and transitioning 'cooling' gas, placing these in the context of semi-analytic models. Our selection criteria lead us to focus on Milky Way-like haloes. We find that the hot-gas density profiles of the haloes form a progressively stronger core over time, the nature of which can be captured by a β profile that has a simple dependence on redshift. In contrast, the hot gas that will cool over a time-step is broadly consistent with a singular isothermal sphere.We find that cooling gas carries a few times the specific angular momentum of the halo and is offset in spin direction from the rest of the hot gas. The gas loses ~60 per cent of its specific angular momentum during the cooling process, generally remaining greater than that of the halo, and it precesses to become aligned with the cold gas already in the disc.We find tentative evidence that angular-momentum losses are slightly larger when gas cools on to dispersion-supported galaxies.We show that an exponential surface density profile for gas arriving on a disc remains a reasonable approximation, but a cusp containing ~20 per cent of the mass is always present, and disc scale radii are larger than predicted by a vanilla Fall & Efstathiou model. These scale radii are still closely correlated with the halo spin parameter, for which we suggest an updated prescription for galaxy formation models.

Funding

110001020:ARC

History

Available versions

PDF (Published version)

ISSN

1365-2966

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

467

Issue

2

Pagination

18 pp

Publisher

Oxford University Press

Copyright statement

This article has been accepted for publication in the Monthly Notices of the Royal Astronomical Society ©: 2017 the authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC