Swinburne
Browse

Investigating semi-automated cadastral boundaries extraction from airborne laser scanned data

Download (2.71 MB)
journal contribution
posted on 2024-07-11, 08:35 authored by Xianghuan Luo, Rohan BennettRohan Bennett, Mila Koeva, Christiann Lemmen
Many developing countries have witnessed the urgent need of accelerating cadastral surveying processes. Previous studies found that large portions of cadastral boundaries coincide with visible physical objects, namely roads, fences, and building walls. This research explores the application of airborne laser scanning (ALS) techniques on cadastral surveys. A semi-automated workflow is developed to extract cadastral boundaries from an ALS point clouds. Firstly, a two-phased workflow was developed that focused on extracting digital representations of physical objects. In the automated extraction phase, after classifying points into semantic components, the outline of planar objects such as building roofs and road surfaces were generated by an α-shape algorithm, whilst the centerlines delineatiation approach was fitted into the lineate object—a fence. Afterwards, the extracted vector lines were edited and refined during the post-refinement phase. Secondly, we quantitatively evaluated the workflow performance by comparing results against an exiting cadastral map as reference. It was found that the workflow achieved promising results: around 80% completeness and 60% correctness on average, although the spatial accuracy is still modest. It is argued that the semi-automated extraction workflow could effectively speed up cadastral surveying, with both human resources and equipment costs being reduced.

History

Available versions

PDF (Published version)

ISSN

2073-445X

Journal title

Land

Volume

6

Issue

3

Article number

article no. 60

Publisher

MDPI AG

Copyright statement

Copyright © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Language

eng

Usage metrics

    Publications

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC