Swinburne
Browse

MUSE-ALMA Haloes XI: gas flows in the circumgalactic medium

Download (5.63 MB)
journal contribution
posted on 2024-08-06, 12:13 authored by Simon Weng, Céline Péroux, Arjun Karki, Ramona Augustin, Varsha P. Kulkarni, Aleksandra Hamanowicz, Martin Zwaan, Elaine M. Sadler, Dylan Nelson, Matthew J. Hayes, Glenn KacprzakGlenn Kacprzak, Andrew J. Fox, Victoria Bollo, Benedetta Casavecchia, Roland Szakacs
The flow of gas into and out of galaxies leaves traces in the circumgalactic medium which can then be studied using absorption lines towards background quasars. We analyse 27 log[N(H I)/cm−2] > 18.0 H I absorbers at z = 0.2 to 1.4 from the MUSE-ALMA Haloes survey with at least one galaxy counterpart within a line of sight velocity of ±500 km s−1. We perform 3D kinematic forward modelling of these associated galaxies to examine the flow of dense, neutral gas in the circumgalactic medium. From the VLT/MUSE, HST broad-band imaging, and VLT/UVES and Keck/HIRES high-resolution UV quasar spectroscopy observations, we compare the impact parameters, star-formation rates, and stellar masses of the associated galaxies with the absorber properties. We find marginal evidence for a bimodal distribution in azimuthal angles for strong H I absorbers, similar to previous studies of the Mg II and O VI absorption lines. There is no clear metallicity dependence on azimuthal angle, and we suggest a larger sample of absorbers is required to fully test the relationship predicted by cosmological hydrodynamical simulations. A case-by-case study of the absorbers reveals that ten per cent of absorbers are consistent with gas accretion, up to 30 per cent trace outflows, and the remainder trace gas in the galaxy disc, the intragroup medium, and low-mass galaxies below the MUSE detection limit. Our results highlight that the baryon cycle directly affects the dense neutral gas required for star-formation and plays a critical role in galaxy evolution.

Funding

ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

1365-2966

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

523

Issue

1

Pagination

24 pp

Publisher

Oxford University Press (OUP)

Copyright statement

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2023, the authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC