We theoretically investigate the simultaneous formation and stable propagation of slow optical soliton pairs in semiconductor quantum dots with a four-level biexciton-exciton cascade configuration. Owing to the destructive interference set up by two continuous wave control fields that couple to a biexciton state, the linear as well as nonlinear dispersion can be dramatically enhanced simultaneously with the absorptions of two weak probe fields being almost suppressed. These results reveal that the detrimental distortions of the two weak-pulsed probe fields due to dispersion effects can be well balanced by the self-phase modulation effect under very low input light intensity, which leads to the slow temporal optical soliton pairs with matched group velocity and amplitude. We also show that the propagation of slow optical solitons can be strongly modified by the biexciton coherence.