We theoretically investigate the itinerant ferromagnetic transition of a spherically trapped ultracold Fermi gas with spin imbalance under strongly repulsive interatomic interactions. Our study is based on a self-consistent solution of the Hartree-Fock mean-field equations beyond the widely used local-density approximation. We demonstrate that, while the local-density approximation holds in the paramagnetic phase, after the ferromagnetic transition it leads to a quantitative discrepancy in various thermodynamic quantities even with large atom numbers. We determine the position of the phase transition by monitoring the shape change of the free-energy curve with increasing the polarization at various interaction strengths.
Funding
Ultracold atomic Fermi gases in the strongly interacting regime: A new frontier of quantum many-body physics