Swinburne
Browse

New constraints on the millimetre emission of six debris discs

Download (2.08 MB)
journal contribution
posted on 2024-07-26, 14:23 authored by Jonathan P. Marshall, Sarah MaddisonSarah Maddison, E. Thilliez, B. C. Matthews, D. J. Wilner, J. S. Greaves, W. S. Holland
The presence of dusty debris around main-sequence stars denotes the existence of planetary systems. Such debris discs are often identified by the presence of excess continuum emission at infrared and (sub-)millimetre wavelengths, with measurements at longer wavelengths tracing larger and cooler dust grains. The exponent of the slope of the disc emission at submillimetre wavelengths, ‘q’, defines the size distribution of dust grains in the disc. This size distribution is a function of the rigid strength of the dust producing parent planetesimals. As a part of the survey ‘PLAnetesimals around TYpical Pre-main seqUence Stars’, we observed six debris discs at 9 mm using the Australian Telescope Compact Array. We obtain marginal (∼3σ) detections of three targets: HD 105, HD 61005 and HD 131835. Upper limits for the three remaining discs, HD 20807, HD 109573 and HD 109085 provide further constraint of the (sub-)millimetre slope of their spectral energy distributions. The values of q (or their limits) derived from our observations are all smaller than the oft-assumed steady-state collisional cascade model (q = 3.5), but lie well within the theoretically expected range for debris discs q ∼ 3–4. The measured q values for our targets are all <3.3, consistent with both collisional modelling results and theoretical predictions for parent planetesimal bodies being ‘rubble piles’ held together loosely by their self-gravity.

Funding

Commonwealth Scientific and Industrial Research Organisation

National Aeronautics and Space Administration

History

Available versions

PDF (Published version)

ISSN

1365-2966

Journal title

Monthly Notices of the Royal Astronomical Society

Volume

468

Issue

3

Pagination

6 pp

Publisher

Oxford University Press (OUP)

Copyright statement

This article has been accepted for publication in the Monthly Notices of the Royal Astronomical Society ©: 2017 the authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC