Swinburne
Browse

Observation-Consistent Input and Whitecapping Dissipation in a Model for Wind-Generated Surface Waves: Description and Simple Calculations

Download (1.4 MB)
journal contribution
posted on 2024-07-09, 15:06 authored by W. Erick Rogers, Alexander Babanin, David W. Wang
A new wind-input and wind-breaking dissipation for phase-averaged spectral models of wind-generated surface waves is presented. Both are based on recent field observations in Lake George, New South Wales, Australia, at moderate-to-strong wind-wave conditions. The respective parameterizations are built on quantitative measurements and incorporate new observed physical features, which until very recently were missing in source terms employed in operational models. Two novel features of the wind-input source function are those that account for the effects of full airflow separation (and therefore relative reduction of the input at strong wind forcing) and for nonlinear behavior of this term. The breaking term also incorporates two new features evident from observational studies; the dissipation consists of two parts-a strictly local dissipation term and a cumulative term-and there is a threshold for wave breaking, below which no breaking occurs. Four variants of the dissipation term are selected for evaluation, with minimal calibration to each. These four models are evaluated using simple calculations herein. Results are generally favorable. Evaluation for more complex situations will be addressed in a forthcoming paper.

History

Available versions

PDF (Published version)

ISSN

0739-0572

Journal title

Journal of Atmospheric and Oceanic Technology

Volume

29

Issue

9

Pagination

17 pp

Publisher

American Meteorological Society

Copyright statement

Copyright © 2012 American Meteorological Society. The published version is reproduced in accordance with the copyright policy of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC