Swinburne
Browse

Observation of a modulational instability in Bose-Einstein condensates

Download (1.48 MB)
journal contribution
posted on 2024-08-06, 12:30 authored by P. J. Everitt, M. A. Sooriyabandara, M. Guasoni, P. B. Wigley, C. H. Wei, G. D. McDonald, K. S. Hardman, P. Manju, J. D. Close, C. C. N. Kuhn, S. S. Szigeti, Y. S. Kivshar, N. P. Robins
We observe the breakup dynamics of an elongated cloud of condensed 85Rb atoms placed in an optical waveguide. The number of localized spatial components observed in the breakup is compared with the number of solitons predicted by a plane-wave stability analysis of the nonpolynomial nonlinear Schrödinger equation, an effective one-dimensional approximation of the Gross-Pitaevskii equation for cigar-shaped condensates. It is shown that the numbers predicted from the fastest growing sidebands are consistent with the experimental data, suggesting that modulational instability is the key underlying physical mechanism driving the breakup.

History

Available versions

PDF (Published version)

ISSN

2469-9934

Journal title

Physical Review A

Volume

96

Issue

4

Article number

article no. 041601(R)

Publisher

American Physical Society (APS)

Copyright statement

Copyright © 2017. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC