Swinburne
Browse
- No file added yet -

On the origin of radio emission in the x-ray states of XTE J1650-500 during the 2001-2002 outburst

Download (373.39 kB)
journal contribution
posted on 2024-07-13, 01:19 authored by Stéphane Corbel, Robert P. Fender, J. A. Tomsick, Anastasios K. Tzioumis, Steven J. Tingay
We report on simultaneous radio and X-ray observations of the black hole candidate XTE J1650-500 during the course of its 2001-2002 outburst. The scheduling of the observations allowed us to sample the properties of XTE J1650-500 in different X-ray spectral states, namely, the hard state, the steep power-law state, and the thermal dominant state, according to the recent spectral classification of McClintock & Remillard. The hard state is consistent with a compact jet dominating the spectral energy distribution at radio frequencies; however, the current data suggest that its contribution as direct synchrotron emission at higher energies may not be significant. In that case, XTE J1650-500 may be dominated by Compton processes (either inverse Comptonization of thermal disk photons and/or synchrotron self-Compton radiation from the base of the compact jet) in the X-ray regime. We surprisingly detect a faint level of radio emission in the thermal dominant state that may be consistent with the emission of previously ejected material interacting with the interstellar medium, similar (but on a smaller angular scale) to what was observed in XTE J1550-564 by Corbel and coworkers. Based on the properties of radio emission in the steep power-law state of XTE J1650-500 and taking into account the behavior of other black hole candidates (namely, GX 339-4, XTE J1550-564, and XTE J1859+226) while in the intermediate and steep power-law states, we are able to present a general pattern of behavior for the origin of radio emission in these two states that could be important for understanding the accretion-ejection coupling very close to the black hole event horizon.

History

Available versions

PDF (Published version)

ISSN

0004-637X

Journal title

Astrophysical Journal

Volume

617

Issue

1

Pagination

11 pp

Publisher

University of Chicago Press

Copyright statement

Copyright © 2004 The American Astronomical Society. is reproduced in accordance with the copyright policy of the publisher.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC