Swinburne
Browse

Optical deflection and sorting of microparticles in a near-field optical geometry

Download (1.7 MB)
journal contribution
posted on 2024-07-09, 18:57 authored by R. F. Marchington, Michael Mazilu, Smitha Kuriakose, V. Garcés-Chávez, P. Reece, T. F. Krauss, Min Gu, Kishan Dholakia
Near-field optical micromanipulation permits new possibilities for controlled motion of trapped objects. In this work, we report an original geometry for optically deflecting and sorting micro-objects employing a total internal reflection microscope system. A small beam of laser light is delivered off-axis through a total internal reflection objective which creates an elongated evanescent illumination of light at a glass/water interface. Asymmetrical gradient and scattering forces from this light field are seen to deflect and sort polystyrene microparticles within a fluid flow. The speed of the deflected objects is dependent upon their intrinsic properties. We present a finite element method to calculate the optical forces for the evanescent waves. The numerical simulations are in good qualitative agreement with the experimental observations and elucidate features of the particle trajectory. In the size range of 1 μm to 5 μm in diameter, polystyrene spheres were found to be guided on average 2.9 ± 0.7 faster than silica spheres. The velocity increased by 3.0 ± 0.5 μms-1 per μm increase in diameter for polystyrene spheres and 0.7 ± 0.2 μms-1 per μm for silica. We employ this size dependence for performing passive optical sorting within a microfluidic chip and is demonstrated in the accompanying video.

History

Available versions

PDF (Published version)

ISSN

1094-4087

Journal title

Optics Express

Volume

16

Issue

6

Pagination

14 pp

Publisher

Optical Society of America

Copyright statement

Copyright © 2008 Optical Society of America. This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.16.003712. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC