posted on 2024-07-09, 19:07authored byP. Elebert, P. J. Callanan, Alexei V. Filippenko, Peter M. Garnavich, Glen Mackie, J. M. Hill, V. Burwitz
We present phase resolved optical photometry and spectroscopy of the accreting millisecond pulsar HETE J1900.1−2455. Our R-band light curves exhibit a sinusoidal modulation, at close to the orbital period, which we initially attributed to X-ray heating of the irradiated face of the secondary star. However, further analysis reveals that the source of the modulation is more likely due to superhumps caused by a precessing accretion disc. Doppler tomography of a broad Hα emission line reveals an emission ring, consistent with that expected from an accretion disc. Using the velocity of the emission ring as an estimate for the projected outer disc velocity, we constrain the maximum projected velocity of the secondary to be 200 km s−1, placing a lower limit of 0.05 M-circle-dot on the secondary mass. For a 1.4 M-circle-dot primary, this implies that the orbital inclination is low, <20°. Utilizing the observed relationship between the secondary mass and the orbital period in short-period cataclysmic variables, we estimate the secondary mass to be ~0.085 M-circle-dot, which implies an upper limit of ~2.4 M-circle-dot for the primary mass.