Swinburne
Browse

Outlook for graphene-based desalination membranes

Download (2.23 MB)
journal contribution
posted on 2024-07-12, 19:03 authored by Albert Boretti, Sarim Al-Zubaidy, Miroslava Vaclavikova, Mohammed Al-Abri, Stefania Castelletto, Sergey Mikhalovsky
We discuss here next-generation membranes based on graphene for water desalination, based on the results of molecular simulations, application of nanofabrication technologies, and experiments. The potential of graphene to serve as a key material for advanced membranes comes from two major possible advantages of this atomically thin two-dimensional material: permeability and selectivity. Graphene-based membranes are also hypothetically attractive based on concentration polarization and fouling, and graphene's chemical and physical stability. Further research is needed to fully achieve these theoretical benefits, however. In addition, improvement in the design and manufacturing processes, so to produce performance and cost-effective graphene-based desalination devices, is still an open question. Finally, membranes are only one part of desalination systems, and current processes are not optimized to take full advantage of the higher selectivity and permeability of graphene. New desalination processes are, therefore, needed to unlock the full benefits of graphene.

History

Available versions

PDF (Published version)

ISSN

2059-7037

Journal title

npj Clean Water

Volume

1

Issue

1

Article number

article no. 5

Publisher

Springer Nature

Copyright statement

Copyright © 2018. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Language

eng

Usage metrics

    Publications

    Categories

    No categories selected

    Keywords

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC