Swinburne
Browse
- No file added yet -

Precision measures of the primordial abundance of deuterium

Download (1.27 MB)
journal contribution
posted on 2024-07-26, 13:50 authored by Ryan J. Cooke, Max Pettini, Regina A. Jorgenson, Michael MurphyMichael Murphy, Charles C. Steidel
We report the discovery of deuterium absorption in the very metal-poor ([Fe/H] = -2.88) damped Lyα system at z abs = 3.06726 toward the QSO SDSS J1358+6522. On the basis of 13 resolved D I absorption lines and the damping wings of the H I Lyα transition, we have obtained a new, precise measure of the primordial abundance of deuterium. Furthermore, to bolster the present statistics of precision D/H measures, we have reanalyzed all of the known deuterium absorption-line systems that satisfy a set of strict criteria. We have adopted a blind analysis strategy (to remove human bias) and developed a software package that is specifically designed for precision D/H abundance measurements. For this reanalyzed sample of systems, we obtain a weighted mean of (D/H)p = (2.53 ± 0.04) × 10-5, corresponding to a universal baryon density 100 Ωb, 0 h 2 = 2.202 ± 0.046 for the standard model of big bang nucleosynthesis (BBN). By combining our measure of (D/H)p with observations of the cosmic microwave background (CMB), we derive the effective number of light fermion species, N eff = 3.28 ± 0.28. We therefore rule out the existence of an additional (sterile) neutrino (i.e., N eff = 4.046) at 99.3% confidence (2.7σ), provided that the values of N eff and of the baryon-to-photon ratio (η10) did not change between BBN and recombination. We also place a strong bound on the neutrino degeneracy parameter, independent of the 4He primordial mass fraction, Y P: ξD = +0.05 ± 0.13 based only on the CMB+(D/H)p observations. Combining this value of ξD with the current best literature measure of Y P, we find a 2σ upper bound on the neutrino degeneracy parameter, |ξ| ≤ +0.062.

Funding

Galaxy formation and femtosecond frequency combs

Australian Research Council

Find out more...

Pristine fuel for early galaxies

Australian Research Council

Find out more...

History

Available versions

PDF (Published version)

ISSN

1538-4357

Journal title

Astrophysical Journal

Volume

781

Issue

1

Article number

article no. 31

Pagination

15 pp

Publisher

Institute of Physics

Copyright statement

Copyright © 2014 The American Astronomical Society. The published version is reproduced in accordance with the copyright policy of the publisher and can be also be located at http://doi.org/10.1088/0004-637X/781/1/31

Language

eng

Usage metrics

    Publications

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC