We theoretically investigate an ultracold spin-polarized atomic Fermi gas with resonant odd-channel (p-wave) interactions trapped in one-dimensional harmonic traps. We solve the Yang-Yang thermodynamic equations based on the exact Bethe ansatz solution, and predict the finite-temperature density profile and breathing mode frequency by using a local density approximation to take into account the harmonic trapping potential. The system features an exotic super fermionic Tonks-Girardeau (super-fTG) phase, due to the large effective range of the interatomic interactions. We explore the parameter space for such a fascinating super-fTG phase at finite temperature and provide smoking-gun signatures of its existence in both breathing mode frequencies and density profiles. Our results suggest that the super-fTG phase can be readily probed at temperatures of about 0.1TF, where TF is the Fermi temperature. These results are to be confronted with future cold-atom experiments with Li6 and K40 atoms.
Funding
ARC | DP140100637
ARC | FT140100003
ARC | FT130100815
ARC | DP140103231
Spin-orbit coupled quantum gases: understanding new generation materials with topological order : Australian Research Council (ARC) | DP140103231
Imbalanced superfluidity with cold atoms: a new way to understand unconventional superconductors and stellar superfluids : Australian Research Council (ARC) | FT130100815
Strongly repulsive ultracold atomic gases as a resource for quantum simulation : Australian Research Council (ARC) | DP140100637
Finding the lost particle: Majorana fermions in ultracold atoms : Australian Research Council (ARC) | FT140100003